12 research outputs found

    Cross-validation aggregation for combining autoregressive neural network forecasts

    Get PDF
    This paper evaluates kk-fold and Monte Carlo cross-validation and aggregation (crogging) for combining neural network autoregressive forecasts. We introduce Monte Carlo crogging which combines bootstrapping and cross-validation (CV) in a single approach through repeated random splitting of the original time series into mutually exclusive datasets for training. As the training/validation split is independent of the number of folds, the algorithm offers more flexibility in the size, and number of training samples compared to kk-fold cross-validation. The study also provides for crogging and bagging: (1) the first systematic evaluation across time series length and combination size, (2) a bias and variance decomposition of the forecast errors to understand improvement gains, and (3) a comparison to established benchmarks of model averaging and selection. Crogging can easily be extended to other autoregressive models. Results on real and simulated series demonstrate significant improvements in forecasting accuracy especially for short time series and long forecast horizons

    Demand forecasting by temporal aggregation:Using optimal or multiple aggregation levels?

    Get PDF
    Recent advances have demonstrated the benefits of temporal aggregation for demand forecasting, including increased accuracy, improved stock control and reduced modelling uncertainty. With temporal aggregation a series is transformed, strengthening or attenuating different elements and thereby enabling better identification of the time series structure. Two different schools of thought have emerged. The first focuses on identifying a single optimal temporal aggregation level at which a forecasting model maximises its accuracy. In contrast, the second approach fits multiple models at multiple levels, each capable of capturing different features of the data. Both approaches have their merits, but so far they have been investigated in isolation. We compare and contrast them from a theoretical and an empirical perspective, discussing the merits of each, comparing the realised accuracy gains under different experimental setups, as well as the implications for business practice. We provide suggestions when to use each for maximising demand forecasting gains

    Forecasting: theory and practice

    Get PDF
    Forecasting has always been in the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The lack of a free-lunch theorem implies the need for a diverse set of forecasting methods to tackle an array of applications. This unique article provides a non-systematic review of the theory and the practice of forecasting. We offer a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts, including operations, economics, finance, energy, environment, and social good. We do not claim that this review is an exhaustive list of methods and applications. The list was compiled based on the expertise and interests of the authors. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of the forecasting theory and practice

    Crogging (cross-validation aggregation) for forecasting - A novel algorithm of neural network ensembles on time series subsamples

    No full text
    In classification, regression and time series prediction alike, cross-validation is widely employed to estimate the expected accuracy of a predictive algorithm by averaging predictive errors across mutually exclusive subsamples of the data. Similarly, bootstrapping aims to increase the validity of estimating the expected accuracy by repeatedly sub-sampling the data with replacement, creating overlapping samples of the data. Estimates are then used to anticipate of future risk in decision making, or to guide model selection where multiple candidates are feasible. Beyond error estimation, bootstrapping has recently been extended to combine each of the diverse models created for estimation, and aggregating over each of their predictions (rather than their errors), coined bootstrap aggregation or bagging. However, similar extensions of cross-validation to create diverse forecasting models have not been considered. In accordance with bagging, we propose to combine the benefits of cross-validation and forecast aggregation, i.e. crogging. We assesses different levels of cross-validation, including a (single-fold) hold-out approach, 2-fold and 10-fold cross validation and Monte-Carlos cross validation, to create diverse base-models of neural networks for time series prediction trained on different data subsets, and average their individual multiple-step ahead predictions. Results of forecasting the 111 time series of the NN3 competition indicate significant improvements accuracy through Crogging relative to Bagging or individual model selection of neural networks

    An Evaluation of Neural Network Ensembles and Model Selection for Time Series Prediction

    No full text
    Ensemble methods represent an approach to combine a set of models, each capable of solving a given task, but which together produce a composite global model whose accuracy and robustness exceeds that of the individual models. Ensembles of neural networks have traditionally been applied to machine learning and pattern recognition but more recently have been applied to forecasting of time series data. Several methods have been developed to produce neural network ensembles ranging from taking a simple average of individual model outputs to more complex methods such as bagging and boosting. Which ensemble method is best; what factors affect ensemble performance, under what data conditions are ensembles most useful and when is it beneficial to use ensembles over model selection are a few questions which remain unanswered. In this paper we present some initial findings using neural network ensembles based on the mean and median applied to forecast synthetic time series data. We vary factors such as the number of models included in the ensemble and how the models are selected, whether randomly or based on performance. We compare the performance of different ensembles to model selection and present the results

    Neural network ensemble operators for time series forecasting

    Get PDF
    The combination of forecasts resulting from an ensemble of neural networks has been shown to outperform the use of a single ``best'' network model. This is supported by an extensive body of literature, which shows that combining generally leads to improvements in forecasting accuracy and robustness, and that using the mean operator often outperforms more complex methods of combining forecasts. This paper proposes a mode ensemble operator based on kernel density estimation, which unlike the mean operator is insensitive to outliers and deviations from normality, and unlike the median operator does not require symmetric distributions. The three operators are compared empirically and the proposed mode ensemble operator is found to produce the most accurate forecasts, followed by the median, while the mean has relatively poor performance. The findings suggest that the mode operator should be considered as an alternative to the mean and median operators in forecasting applications. Experiments indicate that mode ensembles are useful in automating neural network models across a large number of time series, overcoming issues of uncertainty associated with data sampling, the stochasticity of neural network training and the distribution of the forecasts

    The effect of positive feedback in a constraint-based intelligent tutoring system

    Get PDF
    Tutoring technologies for supporting learning from errors via negative feedback are highly developed and have proven their worth in empirical evaluations. However, observations of empirical tutoring dialogs highlight the importance of positive feedback in the practice of expert tutoring. We hypothesize that positive feedback works by reducing student uncertainty about tentative but correct problem solving steps. Positive feedback should communicate three pieces of explanatory information: (a) those features of the situation that made the action the correct one, both in general terms and with reference to the specifics of the problem state; (b) the description of the action at a conceptual level and (c) the important aspect of the change in the problem state brought about by the action. We describe how a positive feedback capability was implemented in a mature, constraint-based tutoring system, SQL-Tutor, which teaches by helping students learn from their errors. Empirical evaluation shows that students who were interacting with the augmented version of SQL-Tutor learned at twice the speed as the students who interacted with the standard, error feedback only, version. We compare our approach with some alternative techniques to provide positive feedback in intelligent tutoring systems. -------------------------------------------------------------------------------

    Forecasting: theory and practice

    No full text
    Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases
    corecore